HP Phase

Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications

Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications

Susceptibility-weighted imaging is an increasingly important adjunct in diagnosing a variety of neurologic diseases and provides a powerful tool to depict and help characterize microbleeds, veins, and other sources of susceptibility. But the term SWI is colloquially used to denote high-spatial-resolution susceptibility-enhanced sequences across different MRI vendors and sequences even when phase information is not used.

read more
Quantifying iron content in magnetic resonance imaging

Quantifying iron content in magnetic resonance imaging

In this work, we review the basic concepts behind imaging iron using T2, T2*, T2′, phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.

read more
Hearing impairment after subarachnoid hemorrhage

Hearing impairment after subarachnoid hemorrhage

Subarachnoid hemorrhage (SAH) survivors experience significant neurological disability, some of which is under‐recognized by neurovascular clinical teams. We set out to objectively determine the occurrence of hearing impairment after SAH, characterize its peripheral and/or central origin, and investigate likely pathological correlates.

read more
Susceptibility-weighted imaging: current status and future directions

Susceptibility-weighted imaging: current status and future directions

Susceptibility-weighted imaging (SWI) is a method that uses the intrinsic nature of local magnetic fields to enhance image contrast in order to improve the visibility of various susceptibility sources and to facilitate diagnostic interpretation. In this article, we review the basics of SWI, including data acquisition, data reconstruction and post-processing.

read more