Semi-automatic detection of increased susceptibility in multiple sclerosis white matter lesions imaged with 1.5T MRI

Category: Papers
Related Topics: ms, qsm, sT2W, swi

Author(s): L. Pelizzari a, N. Bergslanda,b, D. Utriainenc,d,e, S. Viotti a, F. Baglioa, L. Mendozzi a, P. Cecconi a, E.M. Haackec,d,f , P. Zamboni g, M.M. Laganàa,∗
Journal: Biomedical Signal Processing and Control
Published: 2020
Read Full Paper: https://www.sciencedirect.com/science/article/abs/pii/S1746809420301993

Abstract

The identification of regions of increased susceptibility (RoIS) in multiple sclerosis (MS) white matter lesions (WML) is currently performed by the radiologist’s visual inspection of magnetic resonance imaging (MRI) data acquired with high-field MRI scanners. The aims of this study were: 1) to define and validate a semi-automatic method for detecting RoIS in WML from quantitative susceptibility maps (QSM) and susceptibility-weighted imaging (SWI) acquired with a 1.5 T MRI scanner; 2) to assess the prevalence of WML with RoIS and the susceptibility in those areas; and 3) to test the association between RoIS in WML and clinical outcomes.

Method

Thirty-eight MS patients were scanned on a 1.5 T MRI scanner. T2-hyperintense WML were segmented and superimposed on SWI and QSM images. Two intensity thresholds were defined and consecutively applied for identifying RoIS within WML (thrhyper_QSM to identify QSM hyperintensity within WML and thrhypoSWI to identify SWI hypointensity within WML). The sensitivity and specificity were assessed on a subgroup of subjects. The numbers of WML with RoIS and RoIS volume were determined. Differences between phenotypes and correlations with clinical outcome were tested.

Results

The method showed good sensitivity (95.6%) and specificity (92.1%). On average, 44.7% of the WML showed RoIS, occupying 11.0% of the total lesion volume, with an average susceptibility of 39.4 ± 12.2 ppb. The number of WML with RoIS was negatively correlated with disease duration (r = −0.342, p = 0.035).

Conclusions

The proposed semi-automatic method proved to be suitable for the detection of RoIS in WML at 1.5 T. This approach may be useful in longitudinal studies aiming to monitor susceptibility in WML.

New & Related

All Resources

Editorial: Quantitative Susceptibility Mapping in Neurodegeneration

Editorial: Quantitative Susceptibility Mapping in Neurodegeneration

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI).

read more