Common Data Elements in Radiologic Imaging of Traumatic Brain Injury

Category: Papers
Related Topics: HP Phase, MRA, qsm, sFLAIR, sT2W, swi, T2*W, tbi, tSWI

Author(s): E. Mark Haacke, PhD,1y Ann Christine Duhaime, MD,2 Alisa D. Gean, MD,3 Gerard Riedy, MD,4 Max Wintermark, MD,5 Pratik Mukherjee, MD PhD,5,6 David L. Brody, MD,7 Thomas DeGraba, MD,8 Timothy D. Duncan, MD,9 Elie Elovic, MD,10 Robin Hurley, MD,11 Lawrence Latour, PhD,12 James G. Smirniotopoulos, MD,13 and Douglas H. Smith, MD14
Journal: Journal of Magnetic Resonance Imaging
Published: 2010
Read Full Paper: https://onlinelibrary.wiley.com/doi/full/10.1002/jmri.22259

Abstract

Traumatic brain injury (TBI) has a poorly understood pathology. Patients suffer from a variety of physical and cognitive effects that worsen as the type of trauma worsens. Some noninvasive insights into the pathophysiology of TBI are possible using magnetic resonance imaging (MRI), computed tomography (CT), and many other forms of imaging as well.

A recent workshop was convened to evaluate the common data elements (CDEs) that cut across the imaging field and given the charge to review the contributions of the various imaging modalities to TBI and to prepare an overview of the various clinical manifestations of TBI and their interpretation. Technical details regarding state‐of‐the‐art protocols for both MRI and CT are also presented with the hope of guiding current and future research efforts as to what is possible in the field. Stress was also placed on the potential to create a database of CDEs as a means to best record information from a given patient from the reading of the images

New & Related

All Resources

Editorial: Quantitative Susceptibility Mapping in Neurodegeneration

Editorial: Quantitative Susceptibility Mapping in Neurodegeneration

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI).

read more