Quantitative susceptibility mapping: current status and future directions

Category: Papers
Related Topics: HP Phase, MRA, Normal/Aging, qsm, sFLAIR, swi, tSWI

Author(s): E. Mark Haacke a,b,c, ⁎, Saifeng Liu b , Sagar Buch b , Weili Zheng a , Dongmei Wu c , Yongquan Ye a
Journal: Magnetic Resonance Imaging
Published: 2015
Read Full Paper: https://www.sciencedirect.com/science/article/abs/pii/S0730725X14002926

Abstract

Quantitative susceptibility mapping (QSM) is a new technique for quantifying magnetic susceptibility. It has already found various applications in quantifying in vivo iron content, calcifications and changes in venous oxygen saturation. The accuracy of susceptibility mapping is dependent on several factors. In this review, we evaluate the entire process of QSM from data acquisition to individual data processing steps.

We also show preliminary results of several new concepts introduced in this review in an attempt to improve the quality and accuracy for certain steps. The uncertainties in estimating susceptibility differences using susceptibility maps, phase images, and T2* maps are analyzed and compared. Finally, example clinical applications are presented. We conclude that QSM holds great promise in quantifying iron and becoming a standard clinical tool.

New & Related

All Resources

Editorial: Quantitative Susceptibility Mapping in Neurodegeneration

Editorial: Quantitative Susceptibility Mapping in Neurodegeneration

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

Iron Content in Deep Gray Matter as a Function of Age Using Quantitative Susceptibility Mapping: A Multicenter Study

The purpose of this study was to evaluate the effect of resolution on iron content using quantitative susceptibility mapping (QSM); to verify the consistency of QSM across field strengths and manufacturers in evaluating the iron content of deep gray matter (DGM) of the human brain using subjects from multiple sites; and to establish a susceptibility baseline as a function of age for each DGM structure using both a global and regional iron analysis.

read more
Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

Revealing vascular abnormalities and measuring small vessel density in multiple sclerosis lesions using USPIO

In this study, an ultra-small superparamagnetic iron oxide (USPIO) contrast agent, Ferumoxytol, was administered to induce an increase in susceptibility for both arteries and veins to help better reveal the cerebral microvasculature. The purpose of this work was to examine the presence of vascular abnormalities and vascular density in MS lesions using high-resolution susceptibility weighted imaging (SWI).

read more